Approximation Modeling for the Online Performance Management of Distributed Computing Systems

Dara Kusic†, Nagarajan Kandasamy† and Guofei Jiang‡

†Electrical and Computer Engineering Department
Drexel University, Philadelphia, PA 19104, USA
‡Robust and Secure Systems Group
NEC Laboratories America, Princeton, NJ 08540 USA

SYSTEM MODEL

Three service clusters

Power-save cluster

Enterprise system

Three client classes

All incoming requests

Workload $\lambda(k)$

m performance classes of servers

Response time

Electrical and Computer Engineering Department
CONTROL PROBLEM

- Maximize profits over all services
 - Workload generated by the various client classes is time varying
- Solve the optimization problem in real time
 - Tackle the “curse of modeling”
 » The system is characterized by complex nonlinear behavior
 - Tackle the “curse of dimensionality”
 » The state space is large to search for each control input
- Use limited lookahead control (LLC) approach
CONTROLLER DESIGN

- Approximate the system behavior
 - Tackle the “curse of modeling”
- Approximate the controller behavior
 - Tackle the “curse of dimensionality”
- Validate two types of approximation models
 - Neural network
 - Regression tree

Train approximation models via simulation-based learning and test the performance against controllers with explicit equations for the system behavior and optimization process.

Electrical and Computer Engineering Department
EXPERIMENTAL RESULTS

Best results using approximation modeling are within 1% of control with explicit equations.

Control overhead is reduced by 12%-98% when using approximation models.
CONCLUSIONS

- Profit gains in the best case are within 1% of that earned by a controller having perfect knowledge of the system.
- Approximating the system behavior results in a 12-78% reduction in overhead.
- Approximating the control behavior results in a 98% reduction in overhead.

Full results published in a technical report: