Principles of Computer System Design
Syllabus

Introduction: The design of hardware and software in computer systems ranging from personal devices to large-scale distributed, networked computers is an increasingly complex undertaking and requires understanding not only of individual sub-systems, such as the micro-processor, but also the interactions among sub-systems. This class provides a broad introduction to the main principles and abstractions for engineering computer systems, and in-depth studies of their use on computer systems across a variety of designs, be it an operating system, a client/server application, a database server, or a fault-tolerant disk cluster.

Prerequisites: Digital design (EEL4712 or equivalent); introduction to programming or data structures/algorithms (EEL4834 or equivalent).

Computer usage: Student personal computers will be used in assignments. Students will also be given access to distributed systems for assignments and projects.

Assignments: Homeworks and a project will be assigned in this class. The project entails an exploration of a topic related to the design of a computer system through implementation of a prototype or simulation. The project requires knowledge of high-level and/or scripting languages (e.g. Python, Java).

Exams: There will be quizzes, 1-2 midterms and one final exam in this class. An approximate breakdown of the grade weights is 40% for homework/project assignments, 60% for exams/quizzes.

Course topics:
Overview of computer systems: sources of complexity and design principles
 Modularity, Abstraction, Layering, Hierarchy
Elements of computer system organization
 Memory, interpreters, communication links
Layering and naming in computer systems
 Case study: UNIX file system
Enforcing modularity
 Clients and servers; virtualization
Designing for performance
 Metrics; latency and throughput; queuing
 Exploiting workload properties, concurrency; addressing bottlenecks
The network as a system and as a system component
 Network layers; end-to-end
 System design issues
Fault tolerance
 Concepts and metrics
 Systematically applying redundancy; software and data
Atomicity
Consistency
Information security