Brunet: A structured P2P System for Connectivity-constrained Wide-area Environments

Arijit Ganguly, David Wolinsky, Renato Figueiredo, Oscar Boykin
Advanced Computing and Information Systems (ACIS), Electrical and Computer Engineering, University of Florida

Structured P2P systems
- Nodes organized into a well-defined topology
 - E.g. ring, hypercube
- Greedy routing
 - Small routing table per node
 - Number of hops: sub-linear with respect to number of nodes
- Data associated with keys
 - Ownership of keys partitioned among nodes
 - Low search cost
- Topology maintenance overhead

Existing research in structured networks
- Efficient and resilient overlay topologies
- Routing under churn
- Proximity aware overlay routing
- Large-scale DHT-based systems
 - Storage, shared spaces, etc
- Our focus: connectivity constraints
 - NATS/firewalls and internet outages

Brunet P2P system
- Self-organizing ring-structured P2P network
- 160-bit node addresses, and data keys
- Nodes autonomously set up and maintain connections
 with neighbors in routing table
- TCP or UDP, NAT traversal
- $O(1/k \log^2(n))$ overlay hops between nodes, for a
 network of size n, and k connections per node
- Recursive routing
- Route messages over connections
- Adaptive 1-hop communication

Overlay structure and greedy routing

Decentralized NAT-traversal
- Each key stored at two closest nodes in P2P address space
- Copying/migration of keys in response to node arrival/departure

Distributed Hash Table

Non-transitivity
- Transient BGP outages, router mis-configurations, Internet-1 and Internet-2 hosts
 - Inconsistent view of P2P ring
 - Affects DHT dynamics in response to node arrival/departure
 - Neighbors cannot setup a connection
 - Novel solution:
 - Virtual connections over common connection targets

Project status
- Brunet and DHT: implemented
- C#, open-source P2P library
- Applications: IPOP, Grid appliance
- PlanetLab deployments

Future work
- Handling symmetric NATs
 - Constraint more challenging than non-transitivity
- Secure overlay
 - UDP and SSL
- Support for efficient multicast/anycast
 - Using structured P2P techniques

Sponsors and Acknowledgments
Supported in part by the National Science Foundation under Grants No. SCI-0438246 and SCI-0537475. The authors also acknowledge two SUR grants from IBM and a gift from VMware Corporation.

Collaborators
Jiangyan Xu, Pierre St. Juste

NSFCAC Planning Workshop
September 6, 2007